Last updated: 2019-03-26

Checks: 4 2

Knit directory: cropseq/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20181119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

The following chunks had caches available:
  • Alanmatrix

To ensure reproducibility of the results, delete the cache directory Quality_metrics_cache and re-run the analysis. To have workflowr automatically delete the cache directory prior to building the file, set delete_cache = TRUE when running wflow_build() or wflow_publish().

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    analysis/Quality_metrics_cache/
    Ignored:    analysis/figure/gRNA-EdgeR-QLF.Rmd/
    Ignored:    analysis/figure/gRNA-EdgeR-QLF_permutation.Rmd/
    Ignored:    data/gRNA_edgeR-QLF/
    Ignored:    data/gRNA_edgeR-QLF_811d97b/
    Ignored:    data/gRNA_edgeR-QLF_fba9768/

Untracked files:
    Untracked:  analysis/MASTcpmdet.Rmd

Unstaged changes:
    Modified:   analysis/Quality_metrics.Rmd
    Modified:   code/DE_functions.R
    Modified:   code/WIP_2019.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 01a5914 simingz 2019-02-14 permutation
html 01a5914 simingz 2019-02-14 permutation
Rmd 49ecf6e simingz 2018-12-16 explore filtering
Rmd 6b6ebde simingz 2018-12-14 fix Xin’s comment for qc
html 6b6ebde simingz 2018-12-14 fix Xin’s comment for qc
Rmd 8ce79ed simingz 2018-12-05 de_anlysis
html 8ce79ed simingz 2018-12-05 de_anlysis
Rmd 275d5d8 simingz 2018-12-02 qc
html 275d5d8 simingz 2018-12-02 qc
Rmd f5dda86 simingz 2018-12-02 qc
html f5dda86 simingz 2018-12-02 qc
Rmd 8754cad szhao06 2018-12-02 qc
html 8754cad szhao06 2018-12-02 qc
Rmd c206c9d szhao06 2018-12-01 qc
Rmd fdd5647 szhao06 2018-12-01 qc
html fdd5647 szhao06 2018-12-01 qc

Number of guide RNAs per cell

  • number of cells with guide RNA reads =1 From Siwei’s cellranger run:
library(Matrix)
matrix_dir = "/project2/xinhe/simingz/CROP-seq/data_from_Siwei/Xin_scRNA_seq_05Nov2018/filtered_gene_bc_matrices/CellRanger_index/"
matrix.path <- paste0(matrix_dir, "matrix.mtx")
dm <- readMM(file = matrix.path)
dm1 <- tail(dm,n=76)
length(colSums(dm1)[colSums(dm1)==1])
[1] 440

From Alan’s cellranger run:

matrix_dir1 = "/project2/xinhe/simingz/CROP-seq/NSC0507_cellranger/outs/filtered_gene_bc_matrices/cellranger_ref/"
matrix.path1 <- paste0(matrix_dir1, "matrix.mtx")
mattemp1 <- readMM(file = matrix.path1)
mattemp11 <- tail(mattemp1,n=76)
length(colSums(mattemp11)[colSums(mattemp11)==1])
[1] 266
matrix_dir2 = "/project2/xinhe/simingz/CROP-seq/NSC08_cellranger/outs/filtered_gene_bc_matrices/cellranger_ref/"
matrix.path2 <- paste0(matrix_dir2, "matrix.mtx")
mattemp2 <- readMM(file = matrix.path2)
mattemp21 <- tail(mattemp2,n=76)
length(colSums(mattemp21)[colSums(mattemp21)==1])
[1] 190

Note: in Alan’s original analysis conversion from h5 to csv step didn’t seem to work properly. if starting from matrix.mtx files. Siwei and Alan’s analyses gave the same results. So from now on, we will always start from Siwei’s matrix.mtx file.

  • distribution of gRNA types per cell
barcode.path <- paste0(matrix_dir, "barcodes.tsv")
features.path <- paste0(matrix_dir, "genes.tsv")
feature.names = read.delim(features.path, header = FALSE,
                           stringsAsFactors = FALSE)
barcode.names = read.delim(barcode.path, header = FALSE,
                           stringsAsFactors = FALSE)
colnames(dm) = barcode.names$V1
rownames(dm) = feature.names$V2
dm1 <- tail(dm,n=76)

hist(apply(dm1, 2, function(x) length(x[x>0])),breaks=300,xlim=c(0,15),ylim=c(0,2500), main="Distribution of number of gRNA types per cell", xlab= "# gRNA type per cell")

Version Author Date
01a5914 simingz 2019-02-14
6b6ebde simingz 2018-12-14
fdd5647 szhao06 2018-12-01

number of cells targeted for each locus

library(dplyr)
dm1df <- as.data.frame(as.matrix(dm1))
dm1df$label = sapply(strsplit(rownames(dm1),split = '_'), function(x){x[1]})
dm1dfagg = as.data.frame(dm1df %>% group_by(label) %>% summarise_all(funs(sum)))
row.names(dm1dfagg) =dm1dfagg$label
dm1dfagg$label =NULL
  • number of cells targeted for each locus
ncell <- apply(dm1dfagg,1, function (x) length(x[x>=1]))
barplot(ncell,las=2,cex.lab=1, main= "# cells targted for each locus")

Version Author Date
01a5914 simingz 2019-02-14
8754cad szhao06 2018-12-02
fdd5647 szhao06 2018-12-01
  • number of cells only targeted for that locus
# Singletons (cells with only 1 gRNA)
nlocus <- apply(dm1dfagg, 2, function (x) length(x[x>=1]))
hist(nlocus,breaks=100, main="number of targeted locus each cell")

Version Author Date
01a5914 simingz 2019-02-14
8754cad szhao06 2018-12-02
dm1dfagg.uni= dm1dfagg[,nlocus==1]

ncell.uni <- apply(dm1dfagg.uni,1, function (x) length(x[x>=1]))
barplot(ncell.uni,las=2,cex.lab=1,main= "# cells uniquely targted for each locus")

Version Author Date
01a5914 simingz 2019-02-14
8754cad szhao06 2018-12-02

UMI count distribution for cells with unique targeted locus

# Singletons (cells with only 1 targeted locus)
dm.uni <- dm[,nlocus==1]
nUMI <- colSums(dm.uni)
hist(nUMI,breaks=100,xlim=c(0,1e5))  

Version Author Date
01a5914 simingz 2019-02-14
8754cad szhao06 2018-12-02

UMI count distribution for gRNAs in cells with unique targeted locus

# Singletons (cells with only 1 targeted locus)
nUMIgRNA <- colSums(tail(dm.uni,76))
hist(nUMIgRNA,breaks=500,xlim=c(0,20), main = "Histogram of nUMI for gRNAs")  

Version Author Date
01a5914 simingz 2019-02-14
6b6ebde simingz 2018-12-14

Prepare data for differential gene expression

Rows with duplicated gene names will be removed

table(rownames(dm))[table(rownames(dm))>1]

  AJ271736.10       AKAP17A          ASMT         ASMTL          CD99 
            2             2             2             2             2 
        CRLF2        CSF2RA         DHRSX        GTPBP6         IL3RA 
            2             2             2             2             2 
         IL9R       KLHDC7B       MIR1253     MIR3179-1     MIR3179-3 
            2             2             2             2             2 
    MIR3180-1     MIR3180-2     MIR3180-3     MIR3180-4       MIR3690 
            2             2             2             2             2 
      MIR6089    NCRNA00102    NCRNA00106         P2RY8        PLCXD1 
            2             2             2             2             2 
      PPP2R3B RP11-309M23.1 RP13-297E16.4 RP13-297E16.5 RP13-465B17.5 
            2             2             2             2             2 
         SHOX       SLC25A6         SPRY3         VAMP7         ZBED1 
            2             2             2             2             2 
 dm <- dm[!(rownames(dm) %in% names(table(rownames(dm))[table(rownames(dm))>1])), ]
save(dm,dm1dfagg,nlocus, file="data/DE_input.Rd")

Parameters used:

  • for a cell to be considered targeted uniquely at a locus: total read counts for the 3 gRNAs targeting that locus >1, total read counts for gRNA of other locus=0.

  • negative control: neg_EGFP and neg_CTRL are pooled together.

  • cells to be exluded due to low total UMI count: no filtering



sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_0.7.8   Matrix_1.2-15

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       knitr_1.20       bindr_0.1.1      whisker_0.3-2   
 [5] magrittr_1.5     workflowr_1.2.0  tidyselect_0.2.5 lattice_0.20-38 
 [9] R6_2.3.0         rlang_0.3.1      stringr_1.4.0    tools_3.5.1     
[13] grid_3.5.1       git2r_0.23.0     htmltools_0.3.6  yaml_2.2.0      
[17] rprojroot_1.3-2  digest_0.6.18    assertthat_0.2.0 tibble_2.0.1    
[21] crayon_1.3.4     bindrcpp_0.2.2   purrr_0.3.2      fs_1.2.6        
[25] glue_1.3.0       evaluate_0.12    rmarkdown_1.10   stringi_1.3.1   
[29] pillar_1.3.1     compiler_3.5.1   backports_1.1.2  pkgconfig_2.0.2