Last updated: 2019-04-03

Checks: 5 1

Knit directory: cropseq/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20181119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    analysis/Quality_metrics_cache/
    Ignored:    analysis/figure/MASTcpmdet.Rmd/
    Ignored:    analysis/figure/gRNA-EdgeR-QLF.Rmd/
    Ignored:    analysis/figure/gRNA-EdgeR-QLF_permutation.Rmd/
    Ignored:    analysis/figure/gRNA-MASTcpmdet.Rmd/
    Ignored:    data/gRNA_MASTcpmdet/
    Ignored:    data/gRNA_edgeR-QLF/
    Ignored:    data/gRNA_edgeR-QLF_811d97b/
    Ignored:    data/gRNA_edgeR-QLF_fba9768/

Unstaged changes:
    Modified:   analysis/enrichment_gRNA-EdgeR-QLF_permutation.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 6426414 simingz 2019-03-27 MAST results
html 6426414 simingz 2019-03-27 MAST results
Rmd f433017 simingz 2019-03-26 rename enrichment
html f433017 simingz 2019-03-26 rename enrichment

Get cis genes for each targted locus

# SNPfile: "/project2/xinhe/simingz/CROP-seq/scRNA_seq_SNP_list.txt"
module load mysql
mysql --user=genome --host=genome-mysql.cse.ucsc.edu -A -D hg19 -e '
select
 K.name2,
 K.name,
 S.name,
 S.avHet,
 S.chrom,
 S.chromStart,
 K.txStart,
 K.txEnd
from snp150 as S
left join refGene as K on
 (S.chrom=K.chrom and not(K.txEnd+1000000<S.chromStart or S.chromEnd+1000000<K.txStart))
where
 S.name in ("rs7148456","rs12895055","rs7170068","rs520843","rs12716973","rs2192932","rs17200916","rs1198588","rs324017","rs4151680","rs301791","rs324015","rs9882911","rs11633075","rs2027349","rs186132169","rs9661794","rs7936858","rs3861678","rs10933","rs6071578")' > /project2/xinhe/simingz/CROP-seq/cropseq/data/SNP_1000000.txt
snpfile <- "/project2/xinhe/simingz/CROP-seq/scRNA_seq_SNP_list.txt"
gRNAsnp <- read.table(snpfile, header=F, stringsAsFactors = F)
colnames(gRNAsnp) <- c("locus_SNP", "locus")

show_cisgene <- function(cisgene){
  outdfall <- NULL
  outstat <-  rep(0,8)
  names(outstat) <- c("No.cisgene", "No.cisgene(p<0.05)","No.cisgene(logFC>0)","No.cisgene(p<0.05,logFC>0)", "No.allgene", "No.allgene(p<0.05)","No.allgene(logFC>0)","No.allgene(p<0.05,logFC>0)") 
  for (i in 1:dim(gRNAsnp)[1]){
    locsnp <- gRNAsnp[i,"locus_SNP"]
    loc <- gRNAsnp[i,"locus"]
    loccisgene <- unique(cisgene[cisgene[,3]==locsnp,1])
    for (pfile in list.files("data/gRNA_edgeR-QLF/", paste0(loc, "_.*_edgeR-qlf_Neg1_Empricialp.Rd"))){
      load(paste0("data/gRNA_edgeR-QLF/",pfile))
      gRNA <- strsplit(pfile, split = "_edgeR")[[1]][1]
      outdf <- cbind(locsnp, loc, gRNA,loccisgene, resEmpiricalp[loccisgene, c(1,2,9,10)])
      colnames(outdf)[c(1,2,4,7,8)] <- c("locus_SNP", "locus", "cisGene", "empiricalP", "empiricalFDR")
      outstat[5] <- outstat[5] + dim(resEmpiricalp)[1]
      outstat[6] <- outstat[6] + dim(resEmpiricalp[resEmpiricalp$empiricalPall < 0.05,])[1]
      outstat[7] <- outstat[7] + dim(resEmpiricalp[resEmpiricalp$logFC>0 ,])[1]
      outstat[8] <- outstat[8] + dim(resEmpiricalp[resEmpiricalp$empiricalPall < 0.05 & resEmpiricalp$logFC>0, ])[1]
      outdfall <- rbind(outdfall, outdf)
    }
  }
  rownames(outdfall) <- NULL
  outdfall <- outdfall[complete.cases(outdfall),]
  outdfall[, 5:8] <- signif(outdfall[,5:8],3)
  outstat[1] <- dim(outdfall)[1]
  outstat[2] <- dim(outdfall[outdfall$empiricalP < 0.05,])[1]
  outstat[3] <- dim(outdfall[outdfall$logFC>0 ,])[1]
  outstat[4] <- dim(outdfall[outdfall$empiricalP < 0.05 & outdfall$logFC>0, ])[1]
  return(list(outdfall,outstat))
}

genes +/- 50kb of targeted SNPs

cisgene <- read.table("data/SNP_50000.txt", stringsAsFactors = F,sep="\t", header=T)
outres<- show_cisgene(cisgene)
outdfall <- outres[[1]]
write.table( outdfall , file= "data/SNP_50000_empiricalP.txt" , row.names=F, col.names=T, sep="\t", quote = F)
DT::datatable(outdfall)

download this table

outstat <- outres[[2]]
outstat 
                No.cisgene         No.cisgene(p<0.05) 
                        54                          6 
       No.cisgene(logFC>0) No.cisgene(p<0.05,logFC>0) 
                        31                          5 
                No.allgene         No.allgene(p<0.05) 
                    374119                      18315 
       No.allgene(logFC>0) No.allgene(p<0.05,logFC>0) 
                    191101                       9945 
test1 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[6]-outstat[8], outstat[8]), ncol=2))
test2 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[5]-outstat[7], outstat[7]), ncol=2))

Enrichment of repressed genes (logFC>0), p value is 0.229(test1, using p <0.05 genes as background), 0.219 (test2, using all genes as background).

genes +/- 200kb of targeted SNPs

cisgene <- read.table("data/SNP_200000.txt", stringsAsFactors = F,sep="\t", header=T)
outres<- show_cisgene(cisgene)
outdfall <- outres[[1]]
write.table( outdfall , file= "data/SNP_200000_empiricalP.txt" , row.names=F, col.names=T, sep="\t", quote = F)
DT::datatable(outdfall)

download this table

outstat <- outres[[2]]
outstat 
                No.cisgene         No.cisgene(p<0.05) 
                       152                         11 
       No.cisgene(logFC>0) No.cisgene(p<0.05,logFC>0) 
                        84                          9 
                No.allgene         No.allgene(p<0.05) 
                    374119                      18315 
       No.allgene(logFC>0) No.allgene(p<0.05,logFC>0) 
                    191101                       9945 
test1 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[6]-outstat[8], outstat[8]), ncol=2))
test2 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[5]-outstat[7], outstat[7]), ncol=2))

Enrichment of repressed genes (logFC>0), p value is 0.0762(test1, using p <0.05 genes as background), 0.0661 (test2, using all genes as background).

genes +/- 500kb of targeted SNPs

cisgene <- read.table("data/SNP_500000.txt", stringsAsFactors = F,sep="\t", header=T)
outres<- show_cisgene(cisgene)
outdfall <- outres[[1]]
write.table( outdfall , file= "data/SNP_500000_empiricalP.txt" , row.names=F, col.names=T, sep="\t", quote = F)
DT::datatable(outdfall)

download this table

outstat <- outres[[2]]
outstat 
                No.cisgene         No.cisgene(p<0.05) 
                       307                         19 
       No.cisgene(logFC>0) No.cisgene(p<0.05,logFC>0) 
                       167                         15 
                No.allgene         No.allgene(p<0.05) 
                    374119                      18315 
       No.allgene(logFC>0) No.allgene(p<0.05,logFC>0) 
                    191101                       9945 
test1 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[6]-outstat[8], outstat[8]), ncol=2))
test2 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[5]-outstat[7], outstat[7]), ncol=2))

Enrichment of repressed genes (logFC>0), p value is 0.0371(test1, using p <0.05 genes as background), 0.0197 (test2, using all genes as background).

genes +/- 1Mb of targeted SNPs

cisgene <- read.table("data/SNP_1000000.txt", stringsAsFactors = F,sep="\t", header=T)
outres<- show_cisgene(cisgene)
outdfall <- outres[[1]]
write.table( outdfall , file= "data/SNP_1000000_empiricalP.txt" , row.names=F, col.names=T, sep="\t", quote = F)
DT::datatable(outdfall)

download this table

outstat <- outres[[2]]
outstat 
                No.cisgene         No.cisgene(p<0.05) 
                       576                         28 
       No.cisgene(logFC>0) No.cisgene(p<0.05,logFC>0) 
                       294                         17 
                No.allgene         No.allgene(p<0.05) 
                    374119                      18315 
       No.allgene(logFC>0) No.allgene(p<0.05,logFC>0) 
                    191101                       9945 
test1 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[6]-outstat[8], outstat[8]), ncol=2))
test2 <- fisher.test(matrix(c(outstat[2]-outstat[4], outstat[4],outstat[5]-outstat[7], outstat[7]), ncol=2))
Enrichment of repressed genes (logFC>0), p value is 0.571(test1, using p <0.05 genes as background), 0.348 (test2, using all genes as background).

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0      knitr_1.20      whisker_0.3-2   magrittr_1.5   
 [5] workflowr_1.2.0 xtable_1.8-3    R6_2.3.0        stringr_1.4.0  
 [9] tools_3.5.1     DT_0.5          git2r_0.23.0    htmltools_0.3.6
[13] crosstalk_1.0.0 yaml_2.2.0      rprojroot_1.3-2 digest_0.6.18  
[17] shiny_1.2.0     later_0.7.5     htmlwidgets_1.3 fs_1.2.6       
[21] promises_1.0.1  glue_1.3.0      evaluate_0.12   mime_0.6       
[25] rmarkdown_1.10  stringi_1.3.1   compiler_3.5.1  backports_1.1.2
[29] jsonlite_1.6    httpuv_1.4.5