Last updated: 2019-02-15
workflowr checks: (Click a bullet for more information) ✖ R Markdown file: uncommitted changes
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20181119)
The command set.seed(20181119)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: a970cce
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/EdgeR-LRT.Rmd
Modified: analysis/EdgeR-QLF.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Load data
source("code/summary_functions.R")
library(dplyr)
library(gtools)
library(data.table)
load("data/DE_input.Rd")
glocus <- "VPS45"
Nperm <- 5
dim(dm)[1]
NULL
gcount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg[glocus,] >0 & nlocus==1]]
# negative control cells defined as neg gRNA targeted cells
ncount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg["neg",] >0 & nlocus==1]]
coldata <- data.frame(row.names = c(colnames(gcount),colnames(ncount)),
condition=c(rep('G',dim(gcount)[2]),rep('N',dim(ncount)[2])))
countall <- cbind(gcount,ncount)
totalcount <- apply(countall,1,sum)
cellpercent <- apply(countall,1,function(x) length(x[x>0])/length(x))
edgeR log likelihood ratio tests function
library(edgeR)
run_edgeR <- function(y,plotit=T) {
# y is DGElist object
y <- calcNormFactors(y)
group= y$samples[,"group"]
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fitlrt <- glmFit(y,design)
lrt <- glmLRT(fitlrt,coef=2)
out <- topTags(lrt, n=Inf, adjust.method = "BH")
if (plotit==T) {
outsig <- subset(out$table,FDR <0.1)
summ_pvalues(lrt$table$PValue)
print(paste0("There are ",dim(outsig)[1], " genes passed FDR <0.1 cutoff"))
print(knitr::kable(signif(as.matrix(head(out$table[order(out$table$PValue),])),digit=2)))
}
return(out)
}
y <- DGEList(counts= countall,group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
a78d83a | simingz | 2018-12-17 |
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- -----
A2M -1.50 6.9 20 8.6e-06 0.12
LY6H -2.60 6.6 19 1.2e-05 0.12
LGALS1 -2.20 6.6 19 1.2e-05 0.12
TSPO -1.50 6.4 14 1.5e-04 0.97
SLF2 1.10 6.4 14 1.9e-04 0.97
POMK -0.79 6.3 14 2.2e-04 0.97
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall,group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- --------
MYC -3.20 7.4 49 0.0e+00 1.0e-07
LY6H 2.60 6.6 19 1.3e-05 1.9e-01
MED9 -0.97 6.5 15 1.1e-04 7.5e-01
FZD4 0.85 6.3 14 1.4e-04 7.5e-01
LGALS1 2.00 6.6 14 1.7e-04 7.5e-01
GALT -1.00 6.5 14 1.8e-04 7.5e-01
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
---------- ------ ------- --- -------- ------
LY6H -2.80 6.6 24 1.1e-06 0.033
LGALS1 -2.10 6.6 16 5.5e-05 0.710
CHD6 0.96 6.6 16 7.8e-05 0.710
HIST1H2BC 0.88 6.3 15 1.1e-04 0.710
CLCF1 -0.89 6.3 15 1.2e-04 0.710
PNMA6A -1.10 6.4 14 1.7e-04 0.870
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------------- ------ ------- --- -------- -----
LGALS1 2.30 6.6 21 4.5e-06 0.13
LY6H 2.50 6.6 17 3.5e-05 0.51
CTD-2368P22.1 -1.10 6.3 15 1.1e-04 0.51
TPP1 -1.00 6.5 15 1.1e-04 0.51
SCLT1 1.00 6.4 15 1.1e-04 0.51
ZDHHC4 -0.64 7.2 15 1.2e-04 0.51
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- -----
LBX1 2.70 6.4 21 4.7e-06 0.14
LY6H -2.50 6.6 17 4.7e-05 0.70
PAK3 1.20 6.5 15 9.3e-05 0.93
LGALS1 -1.90 6.6 13 2.5e-04 0.99
GNB3 0.86 6.3 13 2.7e-04 0.99
ZNF385A -0.87 6.6 13 3.0e-04 0.99
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------------- ------ ------- --- -------- -----
MYC -2.0 7.4 18 2.0e-05 0.31
LY6H 2.6 6.6 18 2.2e-05 0.31
DYNLT3 1.2 6.3 17 3.3e-05 0.31
RP11-45B20.3 1.1 6.3 17 4.1e-05 0.31
NEUROD1 -2.0 6.4 13 2.5e-04 1.00
LRRC17 1.1 6.3 12 4.4e-04 1.00
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene p fdr perm.p_1 perm.fdr_1 perm.p_2 perm.fdr_2 perm.p_3 perm.fdr_3 perm.p_4 perm.fdr_4 perm.p_5 perm.fdr_5 —– — —- ——— ———– ——— ———– ——— ———– ——— ———– ——— ———–
y <- DGEList(counts= countall[totalcount>0,],group=coldata$condition)
resm <- run_edgeR(y)
Version
Author
Date
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- ------
A2M -1.50 6.9 20 8.6e-06 0.063
LY6H -2.60 6.6 19 1.2e-05 0.063
LGALS1 -2.20 6.6 19 1.2e-05 0.063
TSPO -1.50 6.4 14 1.5e-04 0.510
SLF2 1.10 6.4 14 1.9e-04 0.510
POMK -0.79 6.3 14 2.2e-04 0.510
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[totalcount>0,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
0-2.png" width=“672” style=“display: block; margin: auto;” />
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- --------
CLDN5 3.60 6.8 35 0.0e+00 4.9e-05
LY6H -2.70 6.6 20 7.5e-06 5.9e-02
NMNAT1 1.20 6.4 16 5.1e-05 2.5e-01
WDR53 -1.20 6.3 16 6.3e-05 2.5e-01
RGL2 0.94 6.5 15 8.5e-05 2.7e-01
PIGU -0.69 6.9 14 1.9e-04 4.9e-01
0-4.png" width=“672” style=“display: block; margin: auto;” />
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- -----
ATP8A1 -0.93 6.3 15 0.00011 0.57
LBR -0.72 6.9 15 0.00013 0.57
LMO1 -1.00 6.3 14 0.00021 0.57
PARD6A -0.96 6.5 14 0.00021 0.57
LY6H 2.30 6.6 13 0.00024 0.57
DARS2 -1.00 6.4 13 0.00026 0.57
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.06 | 0.44 | 0.86 | 0.52 | 0.91 | 0.64 | 0.95 | 0.63 | 0.95 | 0.06 | 0.74 |
LGALS1 | 0 | 0.06 | 0.00 | 0.36 | 0.00 | 0.74 | 0.00 | 0.02 | 0.00 | 0.57 | 0.00 | 0.74 |
LY6H | 0 | 0.06 | 0.00 | 0.16 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.57 | 0.00 | 0.10 |
y <- DGEList(counts= countall[cellpercent > 0.03,],group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
a78d83a | simingz | 2018-12-17 |
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- ------
LY6H -2.70 6.6 21 4.1e-06 0.023
LGALS1 -2.30 6.6 21 5.3e-06 0.023
A2M -1.50 6.9 21 5.9e-06 0.023
TSPO -1.50 6.4 15 1.1e-04 0.340
FAM228B -1.00 6.5 14 2.0e-04 0.360
POMK -0.79 6.3 14 2.1e-04 0.360
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.03,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 4 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- --------
MYC 3.1 7.4 43 0.0e+00 5.0e-07
LY6H -2.8 6.6 25 6.0e-07 2.8e-03
DENND2A -1.4 6.3 25 7.0e-07 2.8e-03
LGALS1 -2.3 6.6 22 2.6e-06 7.8e-03
APOE -2.0 6.4 15 9.6e-05 2.3e-01
RASD1 -1.9 6.5 14 1.7e-04 3.0e-01
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- ------
LY6H 2.80 6.6 23 1.6e-06 0.018
NEFM 1.60 7.8 22 3.0e-06 0.018
TMEM59 0.61 7.6 18 2.5e-05 0.100
STMN4 2.20 6.5 16 5.3e-05 0.160
LOXL1 -1.10 6.7 15 1.2e-04 0.270
LRIG1 0.90 6.7 14 2.2e-04 0.380
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- --------
MYC 3.20 7.4 45 0.0e+00 2.0e-07
LY6H 2.70 6.6 21 5.1e-06 3.1e-02
LGALS1 2.20 6.6 18 2.6e-05 1.1e-01
FAXC -0.98 6.5 15 1.1e-04 3.3e-01
COL6A1 0.88 6.7 14 1.7e-04 4.0e-01
MELTF 0.83 6.3 14 2.2e-04 4.3e-01
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- ------
LGALS1 -2.40 6.6 22 2.3e-06 0.028
LY6H -2.70 6.6 21 5.5e-06 0.033
ICK 1.20 6.4 16 5.3e-05 0.210
LRRC58 0.85 6.7 16 7.7e-05 0.230
NRXN3 0.95 6.3 15 1.1e-04 0.250
CCDC169 1.10 6.3 14 1.8e-04 0.320
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- -------
HES6 1.20 9.1 26 3.0e-07 0.0040
LY6H -2.80 6.6 24 1.0e-06 0.0052
LGALS1 -2.40 6.6 23 1.3e-06 0.0052
GPM6B -0.54 8.4 16 5.4e-05 0.1600
RABL3 1.10 6.4 14 1.7e-04 0.3500
GADD45G 1.70 7.8 14 2.1e-04 0.3500
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.02 | 0.28 | 0.99 | 0.83 | 0.99 | 0.78 | 1.00 | 0.3 | 0.95 | 0.18 | 0.91 |
LGALS1 | 0 | 0.02 | 0.00 | 0.01 | 0.00 | 0.38 | 0.00 | 0.11 | 0.0 | 0.03 | 0.00 | 0.01 |
LY6H | 0 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | 0.0 | 0.03 | 0.00 | 0.01 |
y <- DGEList(counts= countall[cellpercent > 0.1,],group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
a78d83a | simingz | 2018-12-17 |
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- -----
A2M -1.50 6.9 20 7.0e-06 0.04
LGALS1 -2.20 6.6 20 8.4e-06 0.04
TSPO -1.50 6.4 15 1.3e-04 0.42
SLF2 1.10 6.5 14 1.8e-04 0.44
FAM228B -0.98 6.5 14 2.3e-04 0.44
ARAF -0.83 6.6 13 3.5e-04 0.45
save(resm, file="data/edgeR-lrt-10%filter_res.Rd")
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.1,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- ------
LGALS1 -2.30 6.6 21 4.5e-06 0.043
TMPO 0.68 7.2 14 2.4e-04 0.410
PHGDH 0.60 8.7 13 2.4e-04 0.410
HNRNPA1 0.31 12.0 13 3.7e-04 0.410
CIB2 0.74 6.8 13 4.0e-04 0.410
NPM1 0.29 11.0 12 4.6e-04 0.410
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- -----
VAV2 -1.10 6.5 19 1.5e-05 0.14
SORT1 -1.00 6.6 16 4.9e-05 0.24
LGALS1 2.00 6.6 15 1.1e-04 0.34
TOB1 -1.10 6.5 14 1.7e-04 0.36
FDXR -0.85 7.0 14 1.9e-04 0.36
VWA1 1.10 6.5 13 2.9e-04 0.36
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
-------- ------ ------- --- -------- --------
MYC 3.20 7.4 46 0.0e+00 1.0e-07
CHKB -1.20 6.4 18 2.1e-05 9.9e-02
CHMP3 -0.56 7.5 15 9.2e-05 1.9e-01
LGALS1 -2.00 6.6 15 9.5e-05 1.9e-01
SERTAD1 -0.96 6.7 15 1.0e-04 1.9e-01
PLA2G15 1.00 6.4 13 2.5e-04 3.8e-01
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- -----
LGALS1 -2.20 6.6 19 1.1e-05 0.10
EIF4E2 -0.53 7.6 16 8.0e-05 0.29
MYC -1.90 7.4 15 9.0e-05 0.29
WDR12 0.74 6.7 13 3.1e-04 0.74
PTCD2 -0.95 6.4 12 5.5e-04 0.98
CCDC57 -0.97 6.3 12 6.5e-04 0.98
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
--------- ------ ------- --- -------- -----
MYC -3.20 7.4 48 0.0e+00 0.00
PPP1R14C 1.30 6.9 15 9.9e-05 0.41
ZNF644 -0.84 6.7 15 1.3e-04 0.41
MT1X -1.40 6.5 13 2.8e-04 0.67
DUSP14 -0.73 6.9 12 4.1e-04 0.72
NME1 -0.33 9.3 12 5.1e-04 0.72
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.04 | 0.03 | 0.59 | 0.29 | 0.94 | 0.08 | 0.99 | 0.04 | 0.98 | 0.67 | 0.99 |
LGALS1 | 0 | 0.04 | 0.00 | 0.04 | 0.00 | 0.34 | 0.00 | 0.19 | 0.00 | 0.10 | 0.00 | 0.72 |
y <- DGEList(counts= countall[cellpercent > 0.2,],group=coldata$condition)
resm <- run_edgeR(y)
Version | Author | Date |
---|---|---|
01a5914 | simingz | 2019-02-14 |
a78d83a | simingz | 2018-12-17 |
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
--------- ------ ------- --- -------- ------
A2M -1.50 6.9 19 1.2e-05 0.093
SLF2 1.10 6.5 14 1.7e-04 0.490
FAM228B -0.99 6.5 14 2.2e-04 0.490
ARAF -0.82 6.6 13 3.4e-04 0.490
NINJ1 0.73 6.9 12 4.5e-04 0.490
C17orf80 0.95 6.4 12 4.6e-04 0.490
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.2,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- --------
MYC -3.0 7.4 41 0.0e+00 1.4e-06
SPP1 2.1 7.0 20 8.0e-06 3.0e-02
CRABP1 -1.1 10.0 16 7.3e-05 1.9e-01
VGF 1.3 6.8 14 2.0e-04 3.7e-01
PLK3 -1.1 6.8 13 2.6e-04 3.7e-01
NKAIN4 -1.0 7.1 13 3.3e-04 3.7e-01
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- -----
SLC4A2 1.10 6.5 17 3.3e-05 0.25
ILVBL -0.72 6.8 15 1.0e-04 0.27
UBQLN2 -0.84 6.6 15 1.4e-04 0.27
RIF1 -0.78 6.8 14 1.4e-04 0.27
CAV1 1.40 7.1 14 1.9e-04 0.29
AKT1S1 0.59 7.1 13 3.2e-04 0.32
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- ----
MALAT1 -0.46 14.0 15 9.7e-05 0.3
WSCD1 0.97 6.6 14 2.1e-04 0.3
HES6 0.90 9.1 14 2.3e-04 0.3
CCZ1B -0.94 6.6 13 2.6e-04 0.3
CCDC59 -0.56 7.4 13 2.7e-04 0.3
SLC3A2 -0.69 8.6 13 3.4e-04 0.3
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------- ------ ------- --- -------- --------
MYC -3.00 7.4 39 0.00000 3.4e-06
ATG14 1.20 6.4 18 0.00002 7.4e-02
SOCS3 -0.91 6.7 13 0.00037 6.4e-01
VPS26A 0.52 7.3 12 0.00048 6.4e-01
PIGU 0.64 6.9 12 0.00053 6.4e-01
UBR5 0.80 6.6 12 0.00056 6.4e-01
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM LR PValue FDR
------ ------ ------- --- -------- ------
MYC -2.20 7.4 20 8.6e-06 0.035
SPP1 -2.10 7.0 20 9.2e-06 0.035
GCLM -1.10 6.8 13 2.4e-04 0.510
AP1S2 -0.52 7.5 13 2.7e-04 0.510
SPC25 -0.90 6.9 13 4.0e-04 0.600
NCK1 0.82 6.6 12 5.2e-04 0.660
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene | p | fdr | perm.p_1 | perm.fdr_1 | perm.p_2 | perm.fdr_2 | perm.p_3 | perm.fdr_3 | perm.p_4 | perm.fdr_4 | perm.p_5 | perm.fdr_5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A2M | 0 | 0.09 | 0.31 | 0.98 | 0.02 | 0.91 | 0.27 | 0.87 | 0.21 | 0.96 | 0.96 | 1 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] gridExtra_2.3 edgeR_3.24.3 limma_3.38.2 Matrix_1.2-15
[5] data.table_1.12.0 gtools_3.8.1 dplyr_0.7.8 lattice_0.20-38
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 highr_0.7 compiler_3.5.1
[4] pillar_1.3.1 git2r_0.23.0 workflowr_1.1.1
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.7.0
[10] tools_3.5.1 digest_0.6.18 gtable_0.2.0
[13] evaluate_0.12 tibble_2.0.1 pkgconfig_2.0.2
[16] rlang_0.3.1 yaml_2.2.0 bindrcpp_0.2.2
[19] stringr_1.4.0 knitr_1.20 locfit_1.5-9.1
[22] rprojroot_1.3-2 tidyselect_0.2.5 glue_1.3.0
[25] R6_2.3.0 rmarkdown_1.10 purrr_0.2.5
[28] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[31] htmltools_0.3.6 splines_3.5.1 assertthat_0.2.0
[34] stringi_1.3.1 crayon_1.3.4 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1