Last updated: 2019-02-15

workflowr checks: (Click a bullet for more information)
  • R Markdown file: uncommitted changes The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20181119)

    The command set.seed(20181119) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: a970cce

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rproj.user/
    
    Unstaged changes:
        Modified:   analysis/EdgeR-LRT.Rmd
        Modified:   analysis/EdgeR-QLF.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 01a5914 simingz 2019-02-14 permutation
    html 01a5914 simingz 2019-02-14 permutation
    Rmd a78d83a simingz 2018-12-17 explore filtering
    html a78d83a simingz 2018-12-17 explore filtering


Load data

source("code/summary_functions.R")
library(dplyr)
library(gtools)
library(data.table)
load("data/DE_input.Rd")
glocus <- "VPS45"
Nperm <- 5
dim(dm)[1]
NULL
gcount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg[glocus,] >0 & nlocus==1]]
# negative control cells defined as neg gRNA targeted cells
ncount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg["neg",] >0 & nlocus==1]]
coldata <- data.frame(row.names = c(colnames(gcount),colnames(ncount)),     
                      condition=c(rep('G',dim(gcount)[2]),rep('N',dim(ncount)[2])))
countall <- cbind(gcount,ncount)
totalcount <- apply(countall,1,sum)
cellpercent <-  apply(countall,1,function(x) length(x[x>0])/length(x))

edgeR log likelihood ratio tests function

library(edgeR)
run_edgeR <- function(y,plotit=T) {
  # y is DGElist object
  y <- calcNormFactors(y)
  group= y$samples[,"group"]
  design <- model.matrix(~group)
  y <- estimateDisp(y,design)

  fitlrt <- glmFit(y,design)
  lrt <- glmLRT(fitlrt,coef=2)
  out <- topTags(lrt, n=Inf, adjust.method = "BH")

  if (plotit==T) {
    outsig <- subset(out$table,FDR <0.1) 
    summ_pvalues(lrt$table$PValue)
    print(paste0("There are ",dim(outsig)[1], " genes passed FDR <0.1 cutoff"))
    print(knitr::kable(signif(as.matrix(head(out$table[order(out$table$PValue),])),digit=2)))
  }
  return(out)
}

Run edgeR–No filtering

y <- DGEList(counts= countall,group=coldata$condition)
resm <- run_edgeR(y)

Expand here to see past versions of edgeRall-1.png:
Version Author Date
01a5914 simingz 2019-02-14
a78d83a simingz 2018-12-17

[1] "There are 0 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue    FDR
-------  ------  -------  ---  --------  -----
A2M       -1.50      6.9   20   8.6e-06   0.12
LY6H      -2.60      6.6   19   1.2e-05   0.12
LGALS1    -2.20      6.6   19   1.2e-05   0.12
TSPO      -1.50      6.4   14   1.5e-04   0.97
SLF2       1.10      6.4   14   1.9e-04   0.97
POMK      -0.79      6.3   14   2.2e-04   0.97

Permutation

permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
  y <- DGEList(counts= countall,group=permute(coldata$condition))
  res <- run_edgeR(y,plotit = T)
  resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
  colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
  permreslist[[n]] <- resp
}

[1] "There are 1 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue       FDR
-------  ------  -------  ---  --------  --------
MYC       -3.20      7.4   49   0.0e+00   1.0e-07
LY6H       2.60      6.6   19   1.3e-05   1.9e-01
MED9      -0.97      6.5   15   1.1e-04   7.5e-01
FZD4       0.85      6.3   14   1.4e-04   7.5e-01
LGALS1     2.00      6.6   14   1.7e-04   7.5e-01
GALT      -1.00      6.5   14   1.8e-04   7.5e-01

[1] "There are 1 genes passed FDR <0.1 cutoff"

             logFC   logCPM   LR    PValue     FDR
----------  ------  -------  ---  --------  ------
LY6H         -2.80      6.6   24   1.1e-06   0.033
LGALS1       -2.10      6.6   16   5.5e-05   0.710
CHD6          0.96      6.6   16   7.8e-05   0.710
HIST1H2BC     0.88      6.3   15   1.1e-04   0.710
CLCF1        -0.89      6.3   15   1.2e-04   0.710
PNMA6A       -1.10      6.4   14   1.7e-04   0.870

[1] "There are 0 genes passed FDR <0.1 cutoff"

                 logFC   logCPM   LR    PValue    FDR
--------------  ------  -------  ---  --------  -----
LGALS1            2.30      6.6   21   4.5e-06   0.13
LY6H              2.50      6.6   17   3.5e-05   0.51
CTD-2368P22.1    -1.10      6.3   15   1.1e-04   0.51
TPP1             -1.00      6.5   15   1.1e-04   0.51
SCLT1             1.00      6.4   15   1.1e-04   0.51
ZDHHC4           -0.64      7.2   15   1.2e-04   0.51

[1] "There are 0 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue    FDR
--------  ------  -------  ---  --------  -----
LBX1        2.70      6.4   21   4.7e-06   0.14
LY6H       -2.50      6.6   17   4.7e-05   0.70
PAK3        1.20      6.5   15   9.3e-05   0.93
LGALS1     -1.90      6.6   13   2.5e-04   0.99
GNB3        0.86      6.3   13   2.7e-04   0.99
ZNF385A    -0.87      6.6   13   3.0e-04   0.99

[1] "There are 0 genes passed FDR <0.1 cutoff"

                logFC   logCPM   LR    PValue    FDR
-------------  ------  -------  ---  --------  -----
MYC              -2.0      7.4   18   2.0e-05   0.31
LY6H              2.6      6.6   18   2.2e-05   0.31
DYNLT3            1.2      6.3   17   3.3e-05   0.31
RP11-45B20.3      1.1      6.3   17   4.1e-05   0.31
NEUROD1          -2.0      6.4   13   2.5e-04   1.00
LRRC17            1.1      6.3   12   4.4e-04   1.00
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)

gene p fdr perm.p_1 perm.fdr_1 perm.p_2 perm.fdr_2 perm.p_3 perm.fdr_3 perm.p_4 perm.fdr_4 perm.p_5 perm.fdr_5 —– — —- ——— ———– ——— ———– ——— ———– ——— ———– ——— ———–

Run edgeR–at least one cell UMI > 0

y <- DGEList(counts= countall[totalcount>0,],group=coldata$condition)
resm <- run_edgeR(y)

Version Author Date simingz 2019-02-14 simingz 2018-12-17

[1] "There are 3 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue     FDR
-------  ------  -------  ---  --------  ------
A2M       -1.50      6.9   20   8.6e-06   0.063
LY6H      -2.60      6.6   19   1.2e-05   0.063
LGALS1    -2.20      6.6   19   1.2e-05   0.063
TSPO      -1.50      6.4   14   1.5e-04   0.510
SLF2       1.10      6.4   14   1.9e-04   0.510
POMK      -0.79      6.3   14   2.2e-04   0.510

Permutation

permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
  y <- DGEList(counts= countall[totalcount>0,],group=permute(coldata$condition))
  res <- run_edgeR(y,plotit = T)
  resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
  colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
  permreslist[[n]] <- resp
}

0-2.png" width=“672” style=“display: block; margin: auto;” />

[1] "There are 2 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue       FDR
-------  ------  -------  ---  --------  --------
CLDN5      3.60      6.8   35   0.0e+00   4.9e-05
LY6H      -2.70      6.6   20   7.5e-06   5.9e-02
NMNAT1     1.20      6.4   16   5.1e-05   2.5e-01
WDR53     -1.20      6.3   16   6.3e-05   2.5e-01
RGL2       0.94      6.5   15   8.5e-05   2.7e-01
PIGU      -0.69      6.9   14   1.9e-04   4.9e-01

0-4.png" width=“672” style=“display: block; margin: auto;” />

[1] "There are 0 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue    FDR
-------  ------  -------  ---  --------  -----
ATP8A1    -0.93      6.3   15   0.00011   0.57
LBR       -0.72      6.9   15   0.00013   0.57
LMO1      -1.00      6.3   14   0.00021   0.57
PARD6A    -0.96      6.5   14   0.00021   0.57
LY6H       2.30      6.6   13   0.00024   0.57
DARS2     -1.00      6.4   13   0.00026   0.57

mergedres <- Reduce(merge,permreslist) knitr::kable(mergedres[fdr <0.1,],digits = 2)

gene p fdr perm.p_1 perm.fdr_1 perm.p_2 perm.fdr_2 perm.p_3 perm.fdr_3 perm.p_4 perm.fdr_4 perm.p_5 perm.fdr_5
A2M 0 0.06 0.44 0.86 0.52 0.91 0.64 0.95 0.63 0.95 0.06 0.74
LGALS1 0 0.06 0.00 0.36 0.00 0.74 0.00 0.02 0.00 0.57 0.00 0.74
LY6H 0 0.06 0.00 0.16 0.00 0.06 0.00 0.00 0.00 0.57 0.00 0.10

Run edgeR–3% cells with UMI > 0

y <- DGEList(counts= countall[cellpercent > 0.03,],group=coldata$condition)
resm <- run_edgeR(y)

Expand here to see past versions of edgeR0.03-1.png:
Version Author Date
01a5914 simingz 2019-02-14
a78d83a simingz 2018-12-17

[1] "There are 3 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue     FDR
--------  ------  -------  ---  --------  ------
LY6H       -2.70      6.6   21   4.1e-06   0.023
LGALS1     -2.30      6.6   21   5.3e-06   0.023
A2M        -1.50      6.9   21   5.9e-06   0.023
TSPO       -1.50      6.4   15   1.1e-04   0.340
FAM228B    -1.00      6.5   14   2.0e-04   0.360
POMK       -0.79      6.3   14   2.1e-04   0.360

Permutation

permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
  y <- DGEList(counts= countall[cellpercent > 0.03,],group=permute(coldata$condition))
  res <- run_edgeR(y,plotit = T)
  resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
  colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
  permreslist[[n]] <- resp
}

[1] "There are 4 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue       FDR
--------  ------  -------  ---  --------  --------
MYC          3.1      7.4   43   0.0e+00   5.0e-07
LY6H        -2.8      6.6   25   6.0e-07   2.8e-03
DENND2A     -1.4      6.3   25   7.0e-07   2.8e-03
LGALS1      -2.3      6.6   22   2.6e-06   7.8e-03
APOE        -2.0      6.4   15   9.6e-05   2.3e-01
RASD1       -1.9      6.5   14   1.7e-04   3.0e-01

[1] "There are 3 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue     FDR
-------  ------  -------  ---  --------  ------
LY6H       2.80      6.6   23   1.6e-06   0.018
NEFM       1.60      7.8   22   3.0e-06   0.018
TMEM59     0.61      7.6   18   2.5e-05   0.100
STMN4      2.20      6.5   16   5.3e-05   0.160
LOXL1     -1.10      6.7   15   1.2e-04   0.270
LRIG1      0.90      6.7   14   2.2e-04   0.380

[1] "There are 2 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue       FDR
-------  ------  -------  ---  --------  --------
MYC        3.20      7.4   45   0.0e+00   2.0e-07
LY6H       2.70      6.6   21   5.1e-06   3.1e-02
LGALS1     2.20      6.6   18   2.6e-05   1.1e-01
FAXC      -0.98      6.5   15   1.1e-04   3.3e-01
COL6A1     0.88      6.7   14   1.7e-04   4.0e-01
MELTF      0.83      6.3   14   2.2e-04   4.3e-01

[1] "There are 2 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue     FDR
--------  ------  -------  ---  --------  ------
LGALS1     -2.40      6.6   22   2.3e-06   0.028
LY6H       -2.70      6.6   21   5.5e-06   0.033
ICK         1.20      6.4   16   5.3e-05   0.210
LRRC58      0.85      6.7   16   7.7e-05   0.230
NRXN3       0.95      6.3   15   1.1e-04   0.250
CCDC169     1.10      6.3   14   1.8e-04   0.320

[1] "There are 3 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue      FDR
--------  ------  -------  ---  --------  -------
HES6        1.20      9.1   26   3.0e-07   0.0040
LY6H       -2.80      6.6   24   1.0e-06   0.0052
LGALS1     -2.40      6.6   23   1.3e-06   0.0052
GPM6B      -0.54      8.4   16   5.4e-05   0.1600
RABL3       1.10      6.4   14   1.7e-04   0.3500
GADD45G     1.70      7.8   14   2.1e-04   0.3500
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene p fdr perm.p_1 perm.fdr_1 perm.p_2 perm.fdr_2 perm.p_3 perm.fdr_3 perm.p_4 perm.fdr_4 perm.p_5 perm.fdr_5
A2M 0 0.02 0.28 0.99 0.83 0.99 0.78 1.00 0.3 0.95 0.18 0.91
LGALS1 0 0.02 0.00 0.01 0.00 0.38 0.00 0.11 0.0 0.03 0.00 0.01
LY6H 0 0.02 0.00 0.00 0.00 0.02 0.00 0.03 0.0 0.03 0.00 0.01

Run edgeR–10% cells with UMI > 0

y <- DGEList(counts= countall[cellpercent > 0.1,],group=coldata$condition)
resm <- run_edgeR(y)

Expand here to see past versions of edgeR0.1-1.png:
Version Author Date
01a5914 simingz 2019-02-14
a78d83a simingz 2018-12-17

[1] "There are 2 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue    FDR
--------  ------  -------  ---  --------  -----
A2M        -1.50      6.9   20   7.0e-06   0.04
LGALS1     -2.20      6.6   20   8.4e-06   0.04
TSPO       -1.50      6.4   15   1.3e-04   0.42
SLF2        1.10      6.5   14   1.8e-04   0.44
FAM228B    -0.98      6.5   14   2.3e-04   0.44
ARAF       -0.83      6.6   13   3.5e-04   0.45
save(resm, file="data/edgeR-lrt-10%filter_res.Rd")

Permutation

permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
  y <- DGEList(counts= countall[cellpercent > 0.1,],group=permute(coldata$condition))
  res <- run_edgeR(y,plotit = T)
  resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
  colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
  permreslist[[n]] <- resp
}

[1] "There are 1 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue     FDR
--------  ------  -------  ---  --------  ------
LGALS1     -2.30      6.6   21   4.5e-06   0.043
TMPO        0.68      7.2   14   2.4e-04   0.410
PHGDH       0.60      8.7   13   2.4e-04   0.410
HNRNPA1     0.31     12.0   13   3.7e-04   0.410
CIB2        0.74      6.8   13   4.0e-04   0.410
NPM1        0.29     11.0   12   4.6e-04   0.410

[1] "There are 0 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue    FDR
-------  ------  -------  ---  --------  -----
VAV2      -1.10      6.5   19   1.5e-05   0.14
SORT1     -1.00      6.6   16   4.9e-05   0.24
LGALS1     2.00      6.6   15   1.1e-04   0.34
TOB1      -1.10      6.5   14   1.7e-04   0.36
FDXR      -0.85      7.0   14   1.9e-04   0.36
VWA1       1.10      6.5   13   2.9e-04   0.36

[1] "There are 2 genes passed FDR <0.1 cutoff"

           logFC   logCPM   LR    PValue       FDR
--------  ------  -------  ---  --------  --------
MYC         3.20      7.4   46   0.0e+00   1.0e-07
CHKB       -1.20      6.4   18   2.1e-05   9.9e-02
CHMP3      -0.56      7.5   15   9.2e-05   1.9e-01
LGALS1     -2.00      6.6   15   9.5e-05   1.9e-01
SERTAD1    -0.96      6.7   15   1.0e-04   1.9e-01
PLA2G15     1.00      6.4   13   2.5e-04   3.8e-01

[1] "There are 0 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue    FDR
-------  ------  -------  ---  --------  -----
LGALS1    -2.20      6.6   19   1.1e-05   0.10
EIF4E2    -0.53      7.6   16   8.0e-05   0.29
MYC       -1.90      7.4   15   9.0e-05   0.29
WDR12      0.74      6.7   13   3.1e-04   0.74
PTCD2     -0.95      6.4   12   5.5e-04   0.98
CCDC57    -0.97      6.3   12   6.5e-04   0.98

[1] "There are 1 genes passed FDR <0.1 cutoff"

            logFC   logCPM   LR    PValue    FDR
---------  ------  -------  ---  --------  -----
MYC         -3.20      7.4   48   0.0e+00   0.00
PPP1R14C     1.30      6.9   15   9.9e-05   0.41
ZNF644      -0.84      6.7   15   1.3e-04   0.41
MT1X        -1.40      6.5   13   2.8e-04   0.67
DUSP14      -0.73      6.9   12   4.1e-04   0.72
NME1        -0.33      9.3   12   5.1e-04   0.72
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene p fdr perm.p_1 perm.fdr_1 perm.p_2 perm.fdr_2 perm.p_3 perm.fdr_3 perm.p_4 perm.fdr_4 perm.p_5 perm.fdr_5
A2M 0 0.04 0.03 0.59 0.29 0.94 0.08 0.99 0.04 0.98 0.67 0.99
LGALS1 0 0.04 0.00 0.04 0.00 0.34 0.00 0.19 0.00 0.10 0.00 0.72

Run edgeR–20% cells with UMI > 0

y <- DGEList(counts= countall[cellpercent > 0.2,],group=coldata$condition)
resm <- run_edgeR(y)

Expand here to see past versions of edgeR0.2-1.png:
Version Author Date
01a5914 simingz 2019-02-14
a78d83a simingz 2018-12-17

[1] "There are 1 genes passed FDR <0.1 cutoff"

            logFC   logCPM   LR    PValue     FDR
---------  ------  -------  ---  --------  ------
A2M         -1.50      6.9   19   1.2e-05   0.093
SLF2         1.10      6.5   14   1.7e-04   0.490
FAM228B     -0.99      6.5   14   2.2e-04   0.490
ARAF        -0.82      6.6   13   3.4e-04   0.490
NINJ1        0.73      6.9   12   4.5e-04   0.490
C17orf80     0.95      6.4   12   4.6e-04   0.490

Permutation

permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
  y <- DGEList(counts= countall[cellpercent > 0.2,],group=permute(coldata$condition))
  res <- run_edgeR(y,plotit = T)
  resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
  colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
  permreslist[[n]] <- resp
}

[1] "There are 2 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue       FDR
-------  ------  -------  ---  --------  --------
MYC        -3.0      7.4   41   0.0e+00   1.4e-06
SPP1        2.1      7.0   20   8.0e-06   3.0e-02
CRABP1     -1.1     10.0   16   7.3e-05   1.9e-01
VGF         1.3      6.8   14   2.0e-04   3.7e-01
PLK3       -1.1      6.8   13   2.6e-04   3.7e-01
NKAIN4     -1.0      7.1   13   3.3e-04   3.7e-01

[1] "There are 0 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue    FDR
-------  ------  -------  ---  --------  -----
SLC4A2     1.10      6.5   17   3.3e-05   0.25
ILVBL     -0.72      6.8   15   1.0e-04   0.27
UBQLN2    -0.84      6.6   15   1.4e-04   0.27
RIF1      -0.78      6.8   14   1.4e-04   0.27
CAV1       1.40      7.1   14   1.9e-04   0.29
AKT1S1     0.59      7.1   13   3.2e-04   0.32

[1] "There are 0 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue   FDR
-------  ------  -------  ---  --------  ----
MALAT1    -0.46     14.0   15   9.7e-05   0.3
WSCD1      0.97      6.6   14   2.1e-04   0.3
HES6       0.90      9.1   14   2.3e-04   0.3
CCZ1B     -0.94      6.6   13   2.6e-04   0.3
CCDC59    -0.56      7.4   13   2.7e-04   0.3
SLC3A2    -0.69      8.6   13   3.4e-04   0.3

[1] "There are 2 genes passed FDR <0.1 cutoff"

          logFC   logCPM   LR    PValue       FDR
-------  ------  -------  ---  --------  --------
MYC       -3.00      7.4   39   0.00000   3.4e-06
ATG14      1.20      6.4   18   0.00002   7.4e-02
SOCS3     -0.91      6.7   13   0.00037   6.4e-01
VPS26A     0.52      7.3   12   0.00048   6.4e-01
PIGU       0.64      6.9   12   0.00053   6.4e-01
UBR5       0.80      6.6   12   0.00056   6.4e-01

[1] "There are 2 genes passed FDR <0.1 cutoff"

         logFC   logCPM   LR    PValue     FDR
------  ------  -------  ---  --------  ------
MYC      -2.20      7.4   20   8.6e-06   0.035
SPP1     -2.10      7.0   20   9.2e-06   0.035
GCLM     -1.10      6.8   13   2.4e-04   0.510
AP1S2    -0.52      7.5   13   2.7e-04   0.510
SPC25    -0.90      6.9   13   4.0e-04   0.600
NCK1      0.82      6.6   12   5.2e-04   0.660
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
gene p fdr perm.p_1 perm.fdr_1 perm.p_2 perm.fdr_2 perm.p_3 perm.fdr_3 perm.p_4 perm.fdr_4 perm.p_5 perm.fdr_5
A2M 0 0.09 0.31 0.98 0.02 0.91 0.27 0.87 0.21 0.96 0.96 1

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] gridExtra_2.3     edgeR_3.24.3      limma_3.38.2      Matrix_1.2-15    
[5] data.table_1.12.0 gtools_3.8.1      dplyr_0.7.8       lattice_0.20-38  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0        highr_0.7         compiler_3.5.1   
 [4] pillar_1.3.1      git2r_0.23.0      workflowr_1.1.1  
 [7] bindr_0.1.1       R.methodsS3_1.7.1 R.utils_2.7.0    
[10] tools_3.5.1       digest_0.6.18     gtable_0.2.0     
[13] evaluate_0.12     tibble_2.0.1      pkgconfig_2.0.2  
[16] rlang_0.3.1       yaml_2.2.0        bindrcpp_0.2.2   
[19] stringr_1.4.0     knitr_1.20        locfit_1.5-9.1   
[22] rprojroot_1.3-2   tidyselect_0.2.5  glue_1.3.0       
[25] R6_2.3.0          rmarkdown_1.10    purrr_0.2.5      
[28] magrittr_1.5      whisker_0.3-2     backports_1.1.2  
[31] htmltools_0.3.6   splines_3.5.1     assertthat_0.2.0 
[34] stringi_1.3.1     crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1