Last updated: 2019-02-15
workflowr checks: (Click a bullet for more information)
-
✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
-
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
-
✔ Seed: set.seed(20181119)
The command set.seed(20181119)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
-
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
-
✔ Repository version: 0d6ec80
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
File
|
Version
|
Author
|
Date
|
Message
|
Rmd
|
0d6ec80
|
simingz
|
2019-02-15
|
permutation-qqplot
|
Rmd
|
02a94e5
|
simingz
|
2019-02-15
|
permutation-qqplot
|
html
|
02a94e5
|
simingz
|
2019-02-15
|
permutation-qqplot
|
Rmd
|
01a5914
|
simingz
|
2019-02-14
|
permutation
|
html
|
01a5914
|
simingz
|
2019-02-14
|
permutation
|
html
|
a78d83a
|
simingz
|
2018-12-17
|
explore filtering
|
Rmd
|
49ecf6e
|
simingz
|
2018-12-16
|
explore filtering
|
html
|
49ecf6e
|
simingz
|
2018-12-16
|
explore filtering
|
Load data
source("code/summary_functions.R")
library(dplyr)
library(gtools)
library(data.table)
load("data/DE_input.Rd")
glocus <- "VPS45"
Nperm <- 5
dim(dm)[1]
NULL
gcount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg[glocus,] >0 & nlocus==1]]
# negative control cells defined as neg gRNA targeted cells
ncount <- dm[1:(dim(dm)[1]-76), colnames(dm1dfagg)[dm1dfagg["neg",] >0 & nlocus==1]]
coldata <- data.frame(row.names = c(colnames(gcount),colnames(ncount)),
condition=c(rep('G',dim(gcount)[2]),rep('N',dim(ncount)[2])))
countall <- cbind(gcount,ncount)
totalcount <- apply(countall,1,sum)
cellpercent <- apply(countall,1,function(x) length(x[x>0])/length(x))
edgeR quasi-likelihood F-tests function
library(edgeR)
run_edgeR <- function(y,plotit=T) {
# y is DGElist object
y <- calcNormFactors(y)
group= y$samples[,"group"]
design <- model.matrix(~group)
y <- estimateDisp(y,design)
fitqlf <- glmQLFit(y,design)
qlf <- glmQLFTest(fitqlf,coef=2)
out <- topTags(qlf, n=Inf, adjust.method = "BH")
if (plotit==T) {
summ_pvalues(qlf$table$PValue)
outsig <- subset(out$table,FDR <0.1)
print(paste0("There are ",dim(outsig)[1], " genes passed FDR <0.1 cutoff"))
print(knitr::kable(signif(as.matrix(head(out$table[order(out$table$PValue),])),digit=2)))
}
return(out)
}
Run edgeR–No filtering
y <- DGEList(counts= countall,group=coldata$condition)
resm <- run_edgeR(y)
Expand here to see past versions of edgeRall-1.png:
Version
|
Author
|
Date
|
01a5914
|
simingz
|
2019-02-14
|
49ecf6e
|
simingz
|
2018-12-16
|
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 59 0 0.0e+00
LGALS1 -2.3 6.6 45 0 1.2e-06
APOE -1.8 6.4 45 0 1.2e-06
TSPO -1.6 6.4 41 0 6.2e-06
LBX1 -2.0 6.4 39 0 9.0e-06
LHX5 -1.5 6.3 37 0 7.8e-05
Permutation
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall,group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
Expand here to see past versions of permall-1.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
MYC -3.3 7.4 76 0 0.0e+00
LY6H 2.8 6.6 54 0 0.0e+00
APOE 1.8 6.4 41 0 6.0e-06
S100A11 1.8 6.4 39 0 1.6e-05
NEUROD1 1.7 6.4 39 0 2.4e-05
LGALS1 2.1 6.6 35 0 5.6e-05
Expand here to see past versions of permall-2.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
LY6H -2.9 6.6 65 0.0e+00 0.0e+00
NEUROD1 -1.8 6.4 47 0.0e+00 1.7e-06
APOE -1.8 6.4 44 0.0e+00 1.7e-06
LGALS1 -2.1 6.6 39 0.0e+00 1.6e-05
GAL -1.6 6.4 34 0.0e+00 9.9e-05
TFF3 -1.2 6.4 29 3.9e-06 1.9e-02
Expand here to see past versions of permall-3.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 18 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H 2.7 6.6 52 0 2.0e-07
LGALS1 2.4 6.6 47 0 7.0e-07
NEUROD1 1.9 6.4 49 0 8.0e-07
S100A11 1.9 6.4 45 0 8.0e-07
APOE 1.7 6.4 37 0 2.7e-05
KCNMA1 -1.5 6.4 32 0 1.7e-04
Expand here to see past versions of permall-4.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 13 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H -2.6 6.6 50 0e+00 4.0e-07
S100A11 -1.9 6.4 44 0e+00 3.1e-06
APOE -1.8 6.4 41 0e+00 8.0e-06
LBX1 2.3 6.4 37 0e+00 6.0e-05
LGALS1 -2.0 6.6 34 0e+00 8.6e-05
LHX5 1.5 6.3 34 1e-07 4.6e-04
Expand here to see past versions of permall-5.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 19 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
NEUROD1 -2.0 6.4 58 0e+00 1.0e-07
LY6H 2.7 6.6 50 0e+00 2.0e-07
APOE 1.9 6.4 45 0e+00 1.2e-06
MT1F -1.6 6.4 33 0e+00 1.8e-04
CYP26A1 1.8 6.5 32 0e+00 2.2e-04
MYC -2.0 7.4 31 1e-07 3.0e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
A2M |
0 |
0.00 |
0.08 |
1.00 |
0.54 |
1.00 |
0.76 |
1.00 |
0.31 |
1.00 |
0.17 |
1.00 |
APOE |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
CALB1 |
0 |
0.00 |
0.13 |
1.00 |
0.16 |
1.00 |
0.95 |
1.00 |
0.11 |
1.00 |
0.34 |
1.00 |
EDN1 |
0 |
0.06 |
0.00 |
1.00 |
0.05 |
1.00 |
0.01 |
1.00 |
0.04 |
1.00 |
0.19 |
1.00 |
FIBIN |
0 |
0.02 |
0.48 |
1.00 |
0.99 |
1.00 |
0.72 |
1.00 |
0.43 |
1.00 |
0.58 |
1.00 |
H1F0 |
0 |
0.04 |
0.00 |
0.25 |
0.00 |
0.33 |
0.03 |
1.00 |
0.00 |
0.37 |
0.00 |
0.62 |
LBX1 |
0 |
0.00 |
0.06 |
1.00 |
0.07 |
1.00 |
0.00 |
0.06 |
0.00 |
0.00 |
0.01 |
0.96 |
LGALS1 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
LHX5 |
0 |
0.00 |
0.41 |
1.00 |
0.36 |
1.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.04 |
LY6H |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
MT1F |
0 |
0.00 |
0.02 |
1.00 |
0.00 |
0.66 |
0.00 |
0.01 |
0.02 |
1.00 |
0.00 |
0.00 |
NEUROD1 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
NEUROG1 |
0 |
0.00 |
0.33 |
1.00 |
0.01 |
1.00 |
0.00 |
0.02 |
0.47 |
1.00 |
0.06 |
1.00 |
PI15 |
0 |
0.01 |
0.00 |
0.31 |
0.00 |
0.40 |
0.00 |
0.03 |
0.00 |
0.17 |
0.00 |
0.00 |
RGS4 |
0 |
0.08 |
0.01 |
1.00 |
0.22 |
1.00 |
0.56 |
1.00 |
0.00 |
0.21 |
0.77 |
1.00 |
SLF2 |
0 |
0.08 |
0.96 |
1.00 |
0.30 |
1.00 |
0.24 |
1.00 |
0.06 |
1.00 |
0.89 |
1.00 |
SST |
0 |
0.01 |
0.00 |
0.06 |
0.12 |
1.00 |
0.06 |
1.00 |
0.03 |
1.00 |
0.00 |
0.01 |
TSPO |
0 |
0.00 |
0.16 |
1.00 |
0.02 |
1.00 |
0.16 |
1.00 |
0.21 |
1.00 |
0.00 |
0.53 |
Run edgeR–at least one cell UMI > 0
y <- DGEList(counts= countall[totalcount>0,],group=coldata$condition)
resm <- run_edgeR(y)
Version
|
Author
|
Date
|
simingz
|
2019-02-14
|
simingz
|
2018-12-16
|
[1] "There are 26 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 59 0 0.0e+00
LGALS1 -2.3 6.6 45 0 6.0e-07
APOE -1.8 6.4 45 0 6.0e-07
TSPO -1.6 6.4 41 0 3.3e-06
LBX1 -2.0 6.4 39 0 4.8e-06
LHX5 -1.5 6.3 37 0 4.1e-05
Permutation
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[totalcount>0,],group=permute(coldata$condition))
res <- run_edgeR(y, plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
Version
|
Author
|
Date
|
simingz
|
2019-02-15
|
[1] "There are 29 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------------- ------ ------- --- ------- --------
LY6H 2.8 6.6 55 0e+00 0.0e+00
APOE 1.7 6.4 38 0e+00 2.4e-05
G0S2 1.6 6.4 42 0e+00 2.4e-05
LGALS1 2.0 6.6 33 0e+00 1.2e-04
RP11-389K14.3 -1.3 6.3 40 2e-07 7.2e-04
NEUROD1 1.5 6.4 28 3e-07 7.9e-04
Version
|
Author
|
Date
|
simingz
|
2019-02-15
|
[1] "There are 16 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
CLDN5 3.4 6.8 69 0.0e+00 0.0e+00
LY6H -2.8 6.6 58 0.0e+00 0.0e+00
APOE -1.8 6.4 43 0.0e+00 1.9e-06
NEUROD1 -1.7 6.4 38 0.0e+00 2.4e-05
LGALS1 -1.7 6.6 26 7.0e-07 2.2e-03
SPARCL1 -1.0 6.3 40 6.5e-06 1.7e-02
Version
|
Author
|
Date
|
simingz
|
2019-02-15
|
[1] "There are 26 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- ----
LY6H -3.2 6.6 77 0 0
S100A11 -2.2 6.4 69 0 0
CLDN5 -2.9 6.8 54 0 0
APOE -1.9 6.4 50 0 0
LGALS1 -2.4 6.6 50 0 0
GAL -1.9 6.4 50 0 0
Version
|
Author
|
Date
|
simingz
|
2019-02-15
|
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
APOE 1.9 6.4 46 0e+00 8.0e-07
NEUROD1 -1.8 6.4 48 0e+00 8.0e-07
LY6H 2.5 6.6 42 0e+00 2.5e-06
MT1F -1.6 6.4 33 0e+00 1.3e-04
LGALS1 1.9 6.6 30 1e-07 3.6e-04
GAL 1.5 6.4 27 4e-07 1.2e-03
Version
|
Author
|
Date
|
simingz
|
2019-02-15
|
[1] "There are 20 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H 2.9 6.6 56 0e+00 0.0e+00
S100A11 2.3 6.4 42 0e+00 9.1e-06
APOE 1.7 6.4 35 0e+00 4.6e-05
CALB1 1.4 6.3 51 1e-07 2.4e-04
LBX1 1.8 6.4 31 1e-07 2.4e-04
LGALS1 1.9 6.6 30 1e-07 2.4e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
A2M |
0 |
0.00 |
0.24 |
0.68 |
0.47 |
0.87 |
0.77 |
0.98 |
0.58 |
0.93 |
0.01 |
0.66 |
APOE |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
CALB1 |
0 |
0.00 |
0.00 |
0.13 |
0.13 |
0.71 |
0.00 |
0.06 |
0.10 |
0.73 |
0.00 |
0.00 |
CMTM8 |
0 |
0.06 |
0.24 |
0.68 |
0.92 |
0.99 |
0.09 |
0.74 |
0.08 |
0.73 |
0.95 |
0.99 |
EDN1 |
0 |
0.03 |
0.00 |
0.02 |
0.00 |
0.02 |
0.03 |
0.74 |
0.00 |
0.24 |
0.00 |
0.47 |
FAM228B |
0 |
0.07 |
0.04 |
0.67 |
0.22 |
0.71 |
0.84 |
0.99 |
0.26 |
0.73 |
0.75 |
0.96 |
FIBIN |
0 |
0.01 |
0.82 |
0.98 |
0.87 |
0.99 |
0.92 |
0.99 |
0.61 |
0.93 |
0.01 |
0.66 |
GAL |
0 |
0.10 |
0.00 |
0.00 |
0.03 |
0.71 |
0.00 |
0.00 |
0.00 |
0.00 |
0.01 |
0.57 |
GAP43 |
0 |
0.07 |
0.61 |
0.90 |
0.26 |
0.72 |
0.67 |
0.94 |
0.92 |
0.99 |
0.01 |
0.54 |
H1F0 |
0 |
0.02 |
0.00 |
0.29 |
0.00 |
0.50 |
0.60 |
0.93 |
0.00 |
0.36 |
0.00 |
0.29 |
KRT18 |
0 |
0.07 |
0.00 |
0.27 |
0.04 |
0.71 |
0.00 |
0.38 |
0.02 |
0.73 |
0.00 |
0.28 |
LBX1 |
0 |
0.00 |
0.22 |
0.68 |
0.11 |
0.71 |
0.04 |
0.74 |
0.04 |
0.73 |
0.00 |
0.00 |
LGALS1 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
LHX5 |
0 |
0.00 |
0.56 |
0.88 |
0.16 |
0.71 |
0.00 |
0.00 |
0.07 |
0.73 |
0.00 |
0.00 |
LINC00338 |
0 |
0.08 |
0.89 |
1.00 |
0.33 |
0.78 |
0.03 |
0.74 |
0.47 |
0.89 |
0.31 |
0.76 |
LY6H |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
MT1F |
0 |
0.00 |
0.00 |
0.03 |
0.00 |
0.48 |
0.00 |
0.06 |
0.00 |
0.00 |
0.01 |
0.55 |
NEUROD1 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.01 |
NEUROG1 |
0 |
0.00 |
0.99 |
1.00 |
0.02 |
0.65 |
0.05 |
0.74 |
0.06 |
0.73 |
0.33 |
0.78 |
OTP |
0 |
0.07 |
0.00 |
0.09 |
0.00 |
0.17 |
0.00 |
0.08 |
0.00 |
0.20 |
0.00 |
0.17 |
PI15 |
0 |
0.00 |
0.00 |
0.09 |
0.00 |
0.26 |
0.00 |
0.05 |
0.00 |
0.20 |
0.00 |
0.02 |
RGS4 |
0 |
0.04 |
0.58 |
0.88 |
0.01 |
0.65 |
0.42 |
0.86 |
0.79 |
0.99 |
0.76 |
0.96 |
SLF2 |
0 |
0.04 |
0.57 |
0.88 |
0.33 |
0.78 |
0.56 |
0.93 |
0.77 |
0.98 |
0.53 |
0.89 |
SMOC2 |
0 |
0.10 |
0.14 |
0.68 |
0.02 |
0.65 |
0.46 |
0.89 |
0.03 |
0.73 |
0.03 |
0.71 |
SST |
0 |
0.00 |
0.02 |
0.62 |
0.00 |
0.08 |
0.11 |
0.74 |
0.05 |
0.73 |
0.00 |
0.02 |
TSPO |
0 |
0.00 |
0.45 |
0.84 |
0.99 |
1.00 |
0.02 |
0.74 |
0.13 |
0.73 |
0.14 |
0.71 |
Run edgeR–3% cells with UMI > 0
y <- DGEList(counts= countall[cellpercent > 0.03,],group=coldata$condition)
resm <- run_edgeR(y)
Expand here to see past versions of edgeR0.03-1.png:
Version
|
Author
|
Date
|
01a5914
|
simingz
|
2019-02-14
|
49ecf6e
|
simingz
|
2018-12-16
|
[1] "There are 20 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H -2.8 6.6 61 0 0.0e+00
LGALS1 -2.3 6.6 47 0 2.0e-07
APOE -1.9 6.4 47 0 2.0e-07
TSPO -1.6 6.4 43 0 1.0e-06
A2M -1.6 6.9 35 0 1.9e-05
MT1F -1.6 6.4 34 0 3.5e-05
Permutation
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.03,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
Expand here to see past versions of perm0.03-1.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 12 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
MYC 3.2 7.4 70 0e+00 0.0e+00
LY6H -2.9 6.6 66 0e+00 0.0e+00
APOE -2.0 6.4 59 0e+00 0.0e+00
LGALS1 -2.5 6.6 53 0e+00 0.0e+00
SSTR2 1.7 6.4 32 0e+00 7.9e-05
DENND2A -1.4 6.3 75 1e-07 2.2e-04
Expand here to see past versions of perm0.03-2.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 21 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- ------- --------
LY6H 2.9 6.6 59 0e+00 0.0e+00
APOE 1.8 6.4 43 0e+00 1.9e-06
ELAVL4 1.7 6.4 32 0e+00 1.3e-04
STMN4 1.9 6.5 32 0e+00 1.4e-04
LGALS1 1.9 6.6 31 1e-07 1.7e-04
KCNMA1 1.4 6.4 28 3e-07 5.2e-04
Expand here to see past versions of perm0.03-3.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 12 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
MYC 3.3 7.4 72 0.0e+00 0.0e+00
LY6H 2.8 6.6 54 0.0e+00 0.0e+00
LGALS1 2.3 6.6 43 0.0e+00 1.3e-06
APOE 1.7 6.4 36 0.0e+00 1.9e-05
CYP26A1 1.8 6.5 35 0.0e+00 2.7e-05
GAL 1.3 6.4 23 3.2e-06 6.3e-03
Expand here to see past versions of perm0.03-4.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 19 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LY6H -2.8 6.6 60 0.0e+00 0.0e+00
APOE -2.0 6.4 53 0.0e+00 0.0e+00
LGALS1 -2.4 6.6 49 0.0e+00 1.0e-07
KCNMA1 1.4 6.4 26 6.0e-07 1.7e-03
RASD1 -1.5 6.5 21 8.0e-06 1.9e-02
NPTX2 -1.3 6.4 20 1.2e-05 2.4e-02
Expand here to see past versions of perm0.03-5.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 36 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- ------- --------
LY6H -2.9 6.6 63 0e+00 0.0e+00
LGALS1 -2.4 6.6 50 0e+00 1.0e-07
APOE -1.7 6.4 37 0e+00 1.4e-05
CALB1 -1.4 6.3 45 2e-07 6.9e-04
HES6 1.3 9.1 28 3e-07 6.9e-04
CYP26A1 1.6 6.5 27 4e-07 7.7e-04
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
A2M |
0 |
0.00 |
0.23 |
0.96 |
0.80 |
1.00 |
0.71 |
1.00 |
0.18 |
0.86 |
0.03 |
0.67 |
APOE |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
CALB1 |
0 |
0.00 |
0.48 |
0.98 |
0.25 |
0.94 |
0.23 |
0.93 |
0.33 |
0.92 |
0.00 |
0.00 |
CMTM8 |
0 |
0.05 |
0.53 |
0.98 |
0.03 |
0.73 |
0.06 |
0.84 |
0.05 |
0.71 |
0.22 |
0.87 |
EDN1 |
0 |
0.04 |
0.27 |
0.97 |
0.32 |
0.95 |
0.02 |
0.75 |
0.39 |
0.94 |
0.00 |
0.12 |
FAM228B |
0 |
0.06 |
0.39 |
0.97 |
0.96 |
1.00 |
0.80 |
1.00 |
0.83 |
0.99 |
0.55 |
0.95 |
GAL |
0 |
0.08 |
0.00 |
0.53 |
0.00 |
0.22 |
0.00 |
0.01 |
0.00 |
0.26 |
0.00 |
0.31 |
GAP43 |
0 |
0.05 |
0.07 |
0.92 |
0.42 |
0.97 |
0.91 |
1.00 |
0.20 |
0.87 |
0.05 |
0.71 |
GLRX |
0 |
0.08 |
0.12 |
0.92 |
0.21 |
0.93 |
0.25 |
0.94 |
0.00 |
0.03 |
0.01 |
0.53 |
H1F0 |
0 |
0.02 |
0.08 |
0.92 |
0.01 |
0.59 |
0.06 |
0.84 |
0.00 |
0.31 |
0.08 |
0.76 |
KRT18 |
0 |
0.05 |
0.09 |
0.92 |
0.24 |
0.94 |
0.41 |
0.96 |
0.77 |
0.99 |
0.00 |
0.03 |
LGALS1 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
LINC00338 |
0 |
0.08 |
0.92 |
0.99 |
0.33 |
0.95 |
0.06 |
0.84 |
0.54 |
0.96 |
0.06 |
0.72 |
LY6H |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
MT1F |
0 |
0.00 |
0.00 |
0.16 |
0.00 |
0.05 |
0.00 |
0.01 |
0.00 |
0.15 |
0.00 |
0.29 |
NEUROG1 |
0 |
0.00 |
0.13 |
0.92 |
0.01 |
0.53 |
0.18 |
0.93 |
0.00 |
0.03 |
0.06 |
0.73 |
RGS4 |
0 |
0.05 |
0.09 |
0.92 |
0.17 |
0.92 |
0.07 |
0.84 |
0.02 |
0.63 |
0.03 |
0.67 |
SLF2 |
0 |
0.05 |
0.06 |
0.90 |
0.93 |
1.00 |
0.46 |
0.97 |
0.14 |
0.85 |
0.01 |
0.49 |
SMOC2 |
0 |
0.09 |
0.04 |
0.83 |
0.55 |
0.98 |
0.24 |
0.94 |
0.01 |
0.53 |
0.01 |
0.56 |
TSPO |
0 |
0.00 |
0.00 |
0.53 |
0.97 |
1.00 |
0.01 |
0.67 |
0.00 |
0.47 |
0.68 |
0.97 |
Run edgeR–10% cells with UMI > 0
y <- DGEList(counts= countall[cellpercent > 0.1,],group=coldata$condition)
resm <- run_edgeR(y)
Expand here to see past versions of edgeR0.1-1.png:
Version
|
Author
|
Date
|
01a5914
|
simingz
|
2019-02-14
|
49ecf6e
|
simingz
|
2018-12-16
|
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.3 6.6 47 0.0e+00 5.0e-07
TSPO -1.6 6.4 42 0.0e+00 2.3e-06
A2M -1.6 6.9 35 0.0e+00 3.4e-05
SLF2 1.1 6.5 20 5.0e-05 8.6e-02
KRT18 1.3 7.1 17 5.3e-05 8.6e-02
CMTM8 1.1 6.6 17 5.7e-05 8.6e-02
save(resm, file="data/edgeR-qlf-10%filter_res.Rd")
Permutation
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.1,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
Expand here to see past versions of perm0.1-1.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 4 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.40 6.6 50 0.0e+00 1.0e-07
GDF15 -1.60 6.6 27 4.0e-07 1.9e-03
KRT18 -1.40 7.1 20 1.1e-05 3.4e-02
AHNAK -1.10 6.4 21 4.2e-05 1.0e-01
FAM83D 1.00 6.5 16 6.8e-05 1.3e-01
ZNF91 -0.93 6.5 15 1.2e-04 1.5e-01
Expand here to see past versions of perm0.1-2.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 9 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- --------
LGALS1 2.1 6.6 37 0.0e+00 3.9e-05
LGALS3BP 1.3 6.4 25 3.0e-06 1.5e-02
TOB1 -1.1 6.5 21 8.5e-06 2.3e-02
SORT1 -1.1 6.6 20 9.7e-06 2.3e-02
VAV2 -1.1 6.5 22 1.4e-05 2.7e-02
VWA1 1.1 6.5 19 2.5e-05 3.6e-02
Expand here to see past versions of perm0.1-3.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 7 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
MYC 3.3 7.4 75 0.0e+00 0.0e+00
LGALS1 -2.0 6.6 34 0.0e+00 6.6e-05
ACTC1 -1.4 6.4 28 2.0e-07 7.1e-04
GDF15 -1.4 6.6 21 6.6e-06 1.4e-02
RASD1 1.5 6.5 21 8.1e-06 1.4e-02
CHKB -1.2 6.4 36 8.7e-06 1.4e-02
Expand here to see past versions of perm0.1-4.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
LGALS1 -2.20 6.6 43 0.0e+00 2.5e-06
MYC -1.80 7.4 26 7.0e-07 3.2e-03
PDP1 -1.10 6.5 19 2.1e-05 6.7e-02
PALMD -0.99 6.5 15 1.1e-04 2.7e-01
EIF4E2 -0.53 7.6 14 2.2e-04 4.3e-01
JOSD2 -0.87 6.5 13 3.4e-04 4.6e-01
Expand here to see past versions of perm0.1-5.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 5 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- --------
MYC -3.30 7.4 79 0.0e+00 0.00000
LGALS1 1.90 6.6 29 1.0e-07 0.00065
MT1X -1.30 6.5 21 5.8e-06 0.01900
PPP1R14C 1.20 6.9 18 2.4e-05 0.05800
RGS16 1.50 6.8 17 5.1e-05 0.09800
CNN1 0.93 6.5 15 1.7e-04 0.22000
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
A2M |
0 |
0.00 |
0.01 |
0.43 |
0.13 |
0.88 |
0.01 |
0.72 |
0.01 |
0.77 |
0.65 |
0.98 |
CMTM8 |
0 |
0.09 |
0.00 |
0.35 |
0.00 |
0.45 |
0.12 |
0.94 |
0.04 |
0.86 |
0.00 |
0.62 |
GAP43 |
0 |
0.09 |
0.02 |
0.46 |
0.07 |
0.82 |
0.10 |
0.94 |
0.02 |
0.83 |
0.01 |
0.71 |
KRT18 |
0 |
0.09 |
0.00 |
0.03 |
0.44 |
0.94 |
0.09 |
0.94 |
0.00 |
0.71 |
0.00 |
0.62 |
LGALS1 |
0 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
SLF2 |
0 |
0.09 |
0.02 |
0.49 |
0.49 |
0.95 |
0.84 |
1.00 |
0.87 |
1.00 |
0.49 |
0.97 |
TSPO |
0 |
0.00 |
0.03 |
0.54 |
0.06 |
0.81 |
0.33 |
0.98 |
0.00 |
0.46 |
0.00 |
0.54 |
Run edgeR–20% cells with UMI > 0
y <- DGEList(counts= countall[cellpercent > 0.2,],group=coldata$condition)
resm <- run_edgeR(y)
Expand here to see past versions of edgeR0.2-1.png:
Version
|
Author
|
Date
|
01a5914
|
simingz
|
2019-02-14
|
49ecf6e
|
simingz
|
2018-12-16
|
[1] "There are 1 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
-------- ------ ------- --- -------- --------
A2M -1.60 6.9 34 0.0e+00 0.00013
SLF2 1.10 6.5 20 4.8e-05 0.12000
CMTM8 1.10 6.6 17 5.9e-05 0.12000
KRT18 1.30 7.1 16 7.3e-05 0.12000
GAP43 -0.91 8.2 16 9.0e-05 0.12000
FAM228B -0.99 6.5 18 9.2e-05 0.12000
Permutation
permreslist <- list()
permreslist[[1]] <- data.table(gene=rownames(resm$table), p=resm$table$PValue, fdr=resm$table$FDR, key="gene")
for (n in 2:(Nperm+1)){
y <- DGEList(counts= countall[cellpercent > 0.2,],group=permute(coldata$condition))
res <- run_edgeR(y,plotit = T)
resp <- data.table(gene=rownames(res$table), p=res$table$PValue, fdr=res$table$FDR, key="gene")
colnames(resp) <- c("gene", paste0("perm.p_",n-1), paste0("perm.fdr_",n-1))
permreslist[[n]] <- resp
}
Expand here to see past versions of perm0.2-1.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 6 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
MYC -3.1 7.4 73 0.0e+00 0.0e+00
SPP1 2.2 7.0 39 0.0e+00 5.7e-06
DLL3 -1.7 7.5 25 9.0e-07 2.4e-03
VGF 1.3 6.8 21 8.3e-06 1.6e-02
CRABP1 -1.1 10.0 16 7.0e-05 9.9e-02
PLK3 -1.1 6.8 16 7.8e-05 9.9e-02
Expand here to see past versions of perm0.2-2.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
--------- ------ ------- --- -------- ------
CAV1 1.40 7.1 24 1.5e-06 0.011
SLC4A2 1.10 6.5 21 7.4e-06 0.028
MIS18BP1 -0.92 6.6 15 1.4e-04 0.270
UBQLN2 -0.85 6.6 14 2.0e-04 0.270
RIF1 -0.78 6.8 14 2.1e-04 0.270
TMEM43 -0.85 6.6 14 2.3e-04 0.270
Expand here to see past versions of perm0.2-3.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 0 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- -----
MYC -1.50 7.4 18 2.8e-05 0.21
CCZ1B -0.96 6.6 17 5.7e-05 0.22
MALAT1 -0.46 14.0 15 1.1e-04 0.26
WSCD1 0.94 6.6 15 1.4e-04 0.26
PEX14 -0.79 6.7 13 4.6e-04 0.42
SLC3A2 -0.67 8.6 12 4.9e-04 0.42
Expand here to see past versions of perm0.2-4.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 3 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- -----
MYC -3.10 7.4 70 0.0e+00 0.00
ATG14 1.20 6.4 29 7.1e-06 0.02
IGFBP5 -1.40 6.7 21 7.7e-06 0.02
SOCS3 -0.93 6.7 16 1.0e-04 0.19
BRAP 0.97 6.4 17 3.3e-04 0.47
UBR5 0.79 6.6 12 5.1e-04 0.47
Expand here to see past versions of perm0.2-5.png:
Version
|
Author
|
Date
|
02a94e5
|
simingz
|
2019-02-15
|
[1] "There are 2 genes passed FDR <0.1 cutoff"
logFC logCPM F PValue FDR
------- ------ ------- --- -------- --------
SPP1 -2.00 7.0 38 0.0e+00 1.9e-05
MYC -2.00 7.4 33 0.0e+00 1.1e-04
GCLM -1.00 6.8 17 5.7e-05 1.4e-01
OSGIN1 -1.20 6.7 16 9.9e-05 1.9e-01
SPC25 -0.88 6.9 14 2.1e-04 3.2e-01
NTRK3 -0.94 6.5 15 2.7e-04 3.5e-01
mergedres <- Reduce(merge,permreslist)
knitr::kable(mergedres[fdr <0.1,],digits = 2)
A2M |
0 |
0 |
0.15 |
0.96 |
0 |
0.42 |
0.14 |
0.82 |
0.1 |
0.96 |
0.67 |
0.99 |
Parameters used
- We used data processed after QC step here.
- targeted locus, choose VPS45.
This reproducible R Markdown
analysis was created with
workflowr 1.1.1